Page |1

P.T. Sarvajanik College of Science

Department of Physics, MTB Campus,
Jawaharlal Nehru Marg,
Athwalines, Surat - 395001

Documentation for the 10T based

Air Quality Monitoring Station

- Project Supervisor -

Prof. Kileen J. Mahajan
Associate professor, Department of Physics

- Project Members -

Vishalkumar Gohel
Alumni

Krupamaya Panda
Alumni

Vishal Warule
Alumni

Page |2

Index

(AN o 1) £ - (o1 RN

1.1. Miscellaneous components and equipment......................
1.2. ONIINE TESOUICES. ..ttt et e e e e e e e
1.3. SOftWAIE FESOUICES. ...t et e e e eeaeeans
1.4, SYStEM NOUSING. ..ottt

2. Descriptions of productsused. ...

2.1. (V[Tel o R el0] gl {0][]
2.1.1. ArdUINO UNO. ..o e e
2.1.2. NOAE-MCU . .. e e i

2.2. Sensorsand modules..........ccoiiiiii i,
2.2.1. BME-280module..........cooiiiiiiii e,
2.2.2. PMS-1003. ... i
2.2.3. ESP-OLWi-Fimodule..........coooviiiiiiiiiii e,
2.2.4. Bi-directional Logic Level Converter.........................

2.3. Weather Meter Kit......o.oee o e et
2.4. PowWer SUPPIY....eee
2.5. ENCIOSUI. .. e

3. CONSEIUCTION . .. e
3.1. U A e,
3.1.1. RI-1Ladapter.....cooiiiiiiiii e
3.1.2. Arduino sShield. ...

3.2. UNIt B,
3.2.1. Adapters for BME-280 and PMS-1003.......................
3.2.2. Node-MCU shield............cooiiii e,

3.3.) NV =] 1510 g IS o (== o

(o)

4.1. Unit
4.1.1.
4.1.2.
4.1.3.
4.1.4.
4.1.5.

4.2. Unit
4.2.1.
4.2.2.
4.2.3.

. Testing.......

Page |3

CWVOTKING. .o

A
WINA VANE. ..o e
J AN [=] g Lo 1 = (=]
RaAIN QAUQE. ...t
PrOCESSING ... e it
Data traNSMISSIONttt

5.1. Learning about the sensor and Arduino interfaces................
5.2. Individual experiments on breadboard................................
5.3. Experiments for the combined system.............................l
5.4. Data tranSmISSION. ..o e ae

CPrOgramMMING. ...

B.1. OVBIVIBW. .ttt e e
6.2. Unit-A (Arduino-Uno with Wi-Fi module ESP-01)..................
6.3. Unit-B (Node-MCU).......ooiii e,

oo

7.2. IMPOI/EXPOIT. ... e,
7.3 FIOWChArS. ...

. Webpage for the meteorological data.........................ooooi i,
. Expenditure

oo

Page |4

1. Abstract

In this documentation we have tried explain the construction and working of
different parts of an loT-based Air Quality Monitoring Station which is installed on
the campus of Sir P.T. Sarvajanik College of Science, which provides real-time
meteorological data of the surroundings using sensors connected to ThinkSpeak
server through Wi-Fi modules. The whole system is divided into two main units; first
unit comprises wind speed & wind direction, wind gust, and total rainfall of the last
24 hours. The other unit comprises values of ambient temperature, humidity, dew
point, heat index, and pressure with real-time PM (particulate matter of size ranging
from 1 micron to 10 microns) concentration in the air. Also, this real-time data can
also be seen on the College’s website. Here (hyperlink).

1.1. Miscellaneous Components and Equipment
— General purpose PCB
— Shield for Arduino Uno
— Shield for Node-MCU
— Rainbow wires
— Passive components (Resistor)
— Adapters for modules
— Glue gun
— Soldering iron
— Berg pins (Male and Female)

1.2. Online resources
— Thingspeak.com is web-based application for real-time data visualization
for loT based systems.

1.3. Software resources
— Arduino IDE (It is a programming environment based on C/C++ languages,
that allows us to communicate with the micro-controller)
— Visual Studio Code (For constructing the webpage, which will be showing
the data gathered from Thingspeak channel).

1.4. System Housing

— Stevenson screen

Page |5

2. Descriptions of Products used

2.1. Micro-Controllers

2.1.1. Arduino Uno

Arduino Unois a microcontroller board based on the ATmega328P. It
has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6
analog inputs, a 16 MHz ceramic resonator (CSTCE16MOV53-R0), a USB
connection, a power jack, an ICSP header and a reset button. We used Arduino
Uno for its compatibility in coding and interfacing with various other Wi-Fi
modules and Sensor modules.

Figure 1
Arduino Uno

2.1.2. Node-MCU (version 0.9)

It Is a micro-controller with built-in Wi-Fi module that helps it to connect
to the internet. It has total of 30 pins with GPIO pins, PWM, Digital, Analogue
(one), and other pins for serial communication such as RX, TX and I12C pins. It
solely used for processing and transmitting real time data gathered from two
sensors, BME-280 and PMS1003, to the internet.

Figure 2
Node-MCU V0.9

Page |6

2.2. Sensors and modules
2.2.1. ESP-01 Wi-Fi module

The ESP-01 ESP8266 Serial Wi-Fi Wireless Transceiver Module is a first
version of wireless modules used to for establishing communication between
the server (online) and hardware (Micro-controller), to have wireless data
transmission by using hotspot of a nearby device (Router, Mobile and PC). In
our project we used an ESP-01 module with Arduino Uno via a Bidirectional
logic-level converter to transmit weather data wirelessly to the online server
(ThingSpeak) for the further visualization. For the further details follow the
information provided in the datasheet.

Figure 3
ESP-01 Wi-Fi Module

2.2.2. BME280 Sensor module

A sensor which is used for measuring relative humidity, barometric
pressure and ambient temperature especially developed for mobile application
and lower power consumption. The product we used for this system came with
a 12C interface module which can be interfaced to any micro-controller via 4
pins. Which is SDA, SCL pins for serial communication and V.. and GND pins to
provide power respectively. The reason for selecting product was its accuracy
in measurement of parameters in acceptable range. For the further details
follow the information provided in the datasheet.

Figure 4
Pressure Sensor module

Page |7

2.2.3. PMS1003 Sensor

It is a digital and universal particle concentration sensor, which can be
used to obtain concentration of particles suspended in the air, and then to get
output through a digital interface with an external device. PMS1003 has inbuilt
optical system consist of photodetector and laser, then for data processing in-
built micro-controller, from which we can gather measured data through
USART serial communication to an Arduino or any other micro-controller. It
can be interfaced Arduino, with an JST adapter, and has 8 pins from which,
however, we used only four of them, such as RX, TX, V.c and GND with our
Node-MCU. We used this sensor for its accuracy range and reasonable price.
For the further details follow the information provided in the datasheet.

Figure 5
Particulate matter sensor

2.2.4. Bidirectional Logic Level Converter

It is a small device with four channels (four different terminals), that
safely steps down 5V signals to 3.3V and steps up 3.3V to 5V at the same time.
It allows to establish serial communication between two devices operating at
two different voltages on their terminals. In our case we used for
communication between Arduino and ESP-01.

Figure 6
Bi-directional logic level converter

2.3.

2.4,

2.5.

Page |8

Sparkfun Weather Meter kit

To measure weather data such as wind speed, wind direction and rain
fall amount, and for measurement of these, we used a kit which comes with a
set of readymade Anemometer, Wind Vane and Rain Gauge respectively.
These instruments produce measured data in form of digital signal, which is
later need to be processed into numeric values through programming done in
an Arduino board. All these instruments can be connected to a micro-
controller via a RJ-11 adapter, since it comes with RJ-11 pins.

|/

Ve

Figure 7
Weather Meter Kit

Power supply

We used SMPS (Switching Mode Power Supply) for Node-MCU and an
Arduino Adapter for Arduino Uno board.

Enclosure

The whole controlling system of UNIT-A and UNIT-B is kept inside a
wooden Stevenson screen installed over the roof of the main building of the
institute, Sir P.T. Sarvajanik College of Science.

https://www.weathershop.co.uk/shop/media/catalog/product/cache/6/image/800x/b216e8ab95b1018bca410e090021ba3f/m/s/ms_met01_1.jpg

3. Construction

3.1. UNIT-A

Page |9

It consists of a Sparkfun Weather meter kit for measurements, an
Arduino Uno for data processing, a bidirectional logic level converter for
interfacing Uno and ESP-01 module, and an ES8266-01 Wi-Fi module for data
transmission through internet. This whole unit is powered by an adapter

connected to DC plug on Arduino Uno board.

Circuit Diagram

Rain Gauge Wind Vane &
Anemometer
GND RNG WVN ANM GND GND
S e o mmmD e e e
e e o D v e e e e
Figure 8

Unit A breadboard schematic

Page |10

3.1.1. RJ-11 Adapter

Our weather meter kit had pinouts in the form of RJ-11, so to connect it

to the Arduino we used a small plastic box with RJ-11 sockets and rainbow
wires as output.

3.1.2. Arduino Shield

In UNIT-A, we had to construct our own shield for mounting Arduino-
Uno board and other modules. For starters, in a general-purpose PCB we

soldered male and female berg pins in order to attach Uno board, and other
modules of this unit.

®

. @
® €0 o
ce

&l
&)
@
| =
@
(-7
@
[
o
2
@
-3
=
o
o
&
®
)

ARDUINO i 1v 11
o © - .
/| o

Figure 9
Arduino Shield from General purpose PCB

3.2. UNIT-B

It consists of a Node-MCU for processing and two sensors. Here we used
Node-MCU v0.9. This whole unit is powered by an SMPS (Switching Mode
Power Supply). Furthermore, for measurement of ambient temperature,
relative humidity and barometric pressure, we used pimoroni’s BME-280
sensor with an 12C interface module and PMS-1003 from Plantower, which is
an optical sensor for measurements of pollutants in the air.

Page |11

Circuit Diagram

PMS1003

TX RX GND vCC

DCinput pin

.. ® oo 0 . ® o o 0 o

e o I EEEEEEE] ¥ BT

oo e e e 0 0 00 ® e 000000
U ® e 00000 ® e s 00000

.
.
.

e e 0 00

NJOWSPON

Figure 10
Unit B Breadboard schematic

3.2.1. Adapters

In this unit, PMS-1003 had 1.25mm JST pinouts. So, in order to connect it
to Arduino without any JST adapter plate, we constructed our own adapter by
soldering wires and a JST connector on a general-purpose PCB. Similarly, for
BME-280, we soldered berg pins on a small piece of general-purpose PCB.

Figure 11

Figure 12
BME280 Adapter

PMS1003 Adapter

Page |12

3.2.2. Node-MCU Shield

In UNIT-B, similarly, we had to construct our own shield for mounting
Node-MCU and other modules. For starters, in a general-purpose PCB we
soldered male and female berg pins in order to attach microcontroller, and
other connections of this unit.

i A
s 86 @ s B4 _‘)
TR A R

v o ¢ 0 v 8 s &
. = 5

oo
0
o
e

0 0O Q00

00 L (
Oono
)OO0 OO

9
©

Figure 13
Node-MCU shield from General purpose PCB

3.3. Stevenson screen

For housing of both units, A and B, we designed our own wooden Stevenson
screen (with one sided louvers) at our college workshop. A Stevenson screen a
shelter to meteorological instruments against direct heat radiation and rain, while
still allowing air to circulate freely around them. Generally, a Stevenson screen is box
with double sided lowers on its walls allowing ventilation to the interior, hence, a
shelter with direct contact with external environment. It forms part of a standard
weather station and holds sensitive instruments that may include thermometer,
barometer, etc. However, in our case, we had digital interface.

Figure 14 Figure 15 Figure 16

Page |13

Page | 14

4.\Working

4.1.

Unit A

4.1.1. Wind Vane

The flow of air moves the pointer in the direction of blowing wind. The
wind vane used in this kit has an analog output, which in response to a
particular direction, generates an analog output and the output is noted by the
Arduino. Thus, it has different output voltages for different directions. So, from
a certain value of voltage, and from the conditional algorithm, we deduce the
direction vane pointed.

4.1.2. Anemometer

Thisis an instrument that measures wind speed, here, as the wind
blows, the cups rotate, making the rod spin. Thus, the stronger the wind blows,
the faster the rod spins. Inside the centre of revolving cups, a magnet is
connected to the spinning rod. With each rotation, when this magnet comes
closer to a reed switch it produces a high signal to the Arduino. In Arduino,
from the time interval between these signals, it calculates the wind speed in
km/h or miles/hour.

4.1.3. Rain gauge

The rain gauge is a self-emptying tipping bucket type. This tipping bucket
rain gauge consists of a funnel that collects and channels the precipitation into
a small seesaw-like container. After a pre-set amount of precipitation falls, the
lever tips, dumping the collected water and sending an electrical signal. Here,
there are two magnets on each side of the tipping mechanism, when these
magnets come in contact with the hall effect sensors at the bottom of the
assembly, it generates a tip. Now, each tip corresponds to 0.2794mm of rain,
and which can be recorded with a digital counter or microcontroller interrupt
input.

Page |15

4.1.4. Processing

To process these data in Unit A, after collecting it through RJ-11
adapters, we used an Uno board, here after collecting digital data sets, Uno
calculates the following variables: (1) Rain amount (2) Wind Speed (3) Wind
direction (4) Wind gust (Previously maximum windspeed). These are then
calculated by an inbuilt library and coding we had done in Arduino IDE.

4.1.5. Data transmission

The processed data (i.e. decimal numbers of respective instrument) is
given to an ESP-01 module connected to the micro-controller on the shield.
Here to operate the module we need to do additional coding in Uno board,
such as, which server (ThingSpeak) and which channel to select, Wi-Fi network
password and SSID, and to send data sets as strings. The module transmits a
set of data packet, which consists of four different decimal numbers, every 20
to 30 seconds to the server.

42. UNITB

4.2.1. BME280

It is a semiconductor-based sensor that comes with a readymade analog
to digital converter module for measuring the pressure, humidity and
temperature. The sensor has a minute hole on it’s surface by which it reacts to
the thermodynamic changes of the surrounding and produces analog signals in
an internal circuit. Now, these analog signals from the sensor are subjected to
an onboard logic circuit of the sensor module which produces digital signals to
be read by the host micro-controller.

4.2.2. PMS1003

In this sensor the data output is taken in the form of digital interface
through RX — TX which is connected to the RX-TX pins of Node-MCU. To begin
with it is an optical device, where laser scattering principle is used for such
sensor, i.e. produce scattering by using laser to radiate suspending particles in
the air, then collect scattering light in a certain degree, and finally obtain the
curve of scattering light change with time. In the end, equivalent particle

Page |16

diameter and the number of particles with different diameter per unit volume
can be calculated by microprocessor based on MIE theory. In a nutshell the
PMS1003 sensor shows direct particle concentration on serial monitor, after
using a proper library (There are many open source libraries for it in Arduino)
and functions in coding.

4.2.3. Microcontroller and Wi-Fi data transmission

Data taken from sensors (BME280 and PMS1003) is processed in
NodeMCU and transmitted through the built-in Wi-Fi. Furthermore, the SoC
ESP8266 12-E also works as a microcontroller and as a data transmitter. Also,
the Node-MCU has an CPH102 chip on board because of which, it is easy to
program through Arduino IDE. However, one also needs to install libraries and
drivers in Arduino IDE to communicate with ESP 12-E chip. We may have used
NodeMCU in Unit A, but we didn’t used because of the incompatibility
between Node-MCU and libraries of Weather meter kit.

Page |17
5.Testing

5.1. Sensor and Arduino Interfaces

Before starting experiments on sensors and Arduino, we needed
to know how we can interface and connect a sensor with a given micro-
controller. Which means how to retrieve the digital data of
measurements in floating point number or to the electrical circuit.
Luckily, there are a lot of open source libraries for these sensors on
internet, using which we can not only retrieve just a number but also the
unit and the scale of the parameter. Furthermore, by using libraries we
can obtain the measured data just by calling a pre-defined function
within it, which makes it flexible for data processing within the
algorithm. Moreover, it saves time for doing coding right from the
scratch.

In our case, we started for looking how to interface the BME-280
with an Arduino Uno or a Node-MCU (Which are, however, are similar
up to a certain extent). One can easily find about these libraries on
internet and can add them to the lib directory of the device or can install
the open-source (readymade) libraries given in the Arduino IDE. In our
case we installed the library from the IDE, after which, all we had left to
do was to use the inbuilt function of different parameters. (One can
actually learn about these functions by visiting the respective GitHub
page of the library)

After that, we can look for the circuit diagram by which can
connect it to the Arduino. Since we had used popular sensors it was
easier to know the circuit diagrams of each one.

Similarly, in case of PMS-1003 and weather meter kit we used the same
method to carry out the interface, where we just used a certain function
to get the data of the certain variable. Hence, for each type of reading
we used different functions.

In a nutshell, one should first learn about the interface between the
controller and the sensor before going to buy or experimenting in such
projects. Also, the circuit connections should be kept in mind as per the
project requirements. (However, in many sensor modules available in
market, generally, do not need extra components).

Page |18
5.2. Communication between sensors and Microcontrollers

The method by which the digital data is transferred between
different modules or micro-controllers is known as Serial
Communication. During the BME-280 we used 12C communication to
connect it with host MCU. In addition to that the PMS-1003 sensor, and
ESP-01 Wi-Fi module we used serial communication to establish
communication (data transmission) between the host and the module.

5.3. Independent experiments on breadboard

To know the workings and processing of the sensor and Arduino
we had experimented on a breadboard to have a temporary circuit,
where we did trials and error to attain the proper circuit and coding to
get the readings on our serial monitor. Here, we tested each of the
sensors separately on the micro-controller and observed the readings.

Similarly, for the Sparkfun weather meter kit, we tested each of
the instruments separately on the breadboard first before going over to
the final PCB. The following images show the experiment of each sensor.

5.4. Experiments for combined system

As we had planned to operate the whole system in two
independent units, where each unit had different sensors to be
connected. So far, we had only operated each sensor or instrument
independently, there were no such difficulties. However, it was a bit
problematic when we tried to combine the independent coding of
sensors in both UNIT A and UNIT B. Though, we resolved the issues by

Page |19

trial and error after many times, it was due to the errors in syntax and
algorithm we might had failed to observe.

The following images show the testing of both the units on
breadboard.

5.5. Datatransmission

After successfully obtaining the data we were supposed to dump
it on our institute’s website, in order to do that we used an indirect
approach and some changes in our coding. Our aim at first was to send
the data over internet to a web-based host (ThingSpeak), and then to
import it from there to the college’s website. Here, as we have
mentioned earlier in section 2, we had Wi-Fi modules (ESP-01 and ESP-
12E) for wireless transmission.

Page |20

6. Programming

6.1.

6.2.

6.3.

Overview

As stated, the project is divided in two parts. In first part Node-MCU is
used as the means of sending the data to the ThingSpeak server. In the first
part Arduino-Uno is used as a microcontroller to collect weather data from
weather meter kit. Since, it does not have any in-built Wi-Fi module, we
needed to provide it with an additional Wi-Fi module which is ESP-01. ESP-01 is
programmable through any Arduino device. In the other part, Node-MCU is
used which is the combination of a microcontroller and a Wi-Fi module. So, it
does not need additional Wi-Fi module to send data. C-programming language
is used to program both the microcontrollers with the help of Arduino-IDE.

Unit-A (Arduino-Uno with Wi-Fi module ESP-01)

In this part, a weather meter kit is connected with Arduino-Uno in
order to get the values such as wind-speed, wind-direction, wind-gust
and total rainfall of the last hours. To achieve the detection of different
data from weather meter kit on Arduino-Uno we used the following
libraries,

— ADS Weather
— Software Serial

ADS Weather library helped us gathering all the data provided by
the weather meter kit into Arduino-Uno. The other library called
Software Serial library is used to establish the serial connection between
ESP-01 with Arduino-Uno. Through this communication we could
program ESP-01 with the help of Arduino-Uno. Also, we could send the
data from Arduino to ESP-01 and then to ThingSpeak server.

Unit-B (Node-MCU)

In this part, sensors and modules such as BME-280 and PMS-
1003 were connected to Node-MCU. From BME-280, we gathered the
data of temperature, humidity and pressure, and using these values,
dew point and heat index were calculated, and from PMS-1003, we

https://www.arduino.cc/en/Main.Software

Page |21

could get abundance of pollutants in the environment. To collect all the
data from two different modules, the major libraries used are as follows,

— PMS

— Adafruit Sensor
— Adafruit BME-280
— ESP8266Wifi

PMS library helped us with collecting the data of particulate matters
(PM) of different diameters of 2.5um, 1pum and 10pm from PMS-1003 sensor.
All the programs and calculations for collecting the data of BME-280 and
calculating additional data were provided by the libraries, Adafruit Sensor and
Adafruit BME-280. These data and calculations were sent to the ThingSpeak
server with the help of ESP8266WiFi library.

6.4. Codes

6.4.1. UNIT A Codes

Libraries included for ESP-01 Wi-Fi module and Sparkfun Weather meter kit
} <SoftwareSerial.h
finclude <ADSWeather.h>|
//Defining digital pins for UART communication (RX,TX)

SoftwareSerial espSerial(8, 9);

//Defining pins for data input from weathe
ANEMOMETER_PIN 2 //
#define VANE PIN AO
$define RAIN PIN 3 // Defining pin fe

fine CALC_INTERVAL 1000
fine DEBUG
// Defining arrays for showing direction in Wind Vane readings.
int sensorExp[] = {66,84,93,126,184,244,287,406,461,599,630,702,785,827,886,945};
float dirDeg[] = {112.5,67.5,90,157.5,135,202.5,180,22.5,45,247.5,225,337.5,0,292.5,315,270}; // Direction in Degrees.
char* dirCard[] = {"ESE","ENE","E","SSE","SE","SSW","S", "NNE", "NE", "WSW", "SW", "NNW", "N", "WNW", "NW", "W"}; // Direction in Characters.

{63,80,89,120,175,232,273,385,438,569, 613,667,746,812,869,931};
{69,88,98,133,194,257,301, 426,484,612, 661,737,811,868,930,993};

int sensorMin[]

int sensorMax[]

int incoming = 0;
float angle = 0;

char* dir ="temp";

String mySSID = "computer lab"; // SSID of present Wi-Fi network (name of the network as shown in mobile or PC).
String myPWD = "7600026769"; // Password of your Wi-Fi network.

String myAPI = "HRQ2ZIF09GBACL1D"; // RPI key of ThingSpeak Channel.

String myHOST = "api.thingspeak.com";// URL of the ThingSpeak site.

String myPORT = "80";

String myFIELDl = "fieldl";

String myFIELD2 = “"field2";

String myFIELD3 = "field3";

String myFIELD4 = "field4";

unsigned long nextCalc;

unsigned long timer;

int windDir;

int windsSpeed;

int rainAmmount;

ADSWeather wsl(RAIN PIN, VANE PIN, ANEMOMETER_PIN); //This should configure all pins correctly

void setup()

Serial.begin(9600); // For communication between Arduino Board and your PC/device.
espSerial.begin(115200); // For communication of ESP-01 module with PC/device.

espDbata ("AT+RST", 1000, DEBUG);
espData ("AT+CWMODEqqgagaa@aqwg=1", 1000, DEBUG) ;
espData ("AT+CWJAP=\""+ mySSID +"\",\""+ myPWD +"\"", 1000, DEBUG);

//wsl.countRain is the ISR for the rain gauge.

attachInterrupt(digitalPinToInterrupt (RAIN PIN), wsl.countRain, FALLING);

//wsl.countAnemometer is the ISR for the anemometer.

attachInterrupt (digitalPinToInterrupt (ANEMOMETER PIN), wsl.countAnemometer, FALLING);
nextCalc = millis() + CALC_ INTERVAL;

delay (1000) ;

void loop ()
{

timer

= millis();
int rainAmmount;
float windSpeed;

int windGust;
wsl.update(); //Call this every cycle in your main loop to update all the sensor values

if(timer > nextCalc)
{
nextCalc = timer + CALC_INTERVAL;
rainAmmount = wsl.getRain();
windSpeed = wsl.getWindSpeed();
windGust = wsl.getWindGust();
// Use of inbuilt functions in the 'AWSWeather' library.

// This will print the calculated wind speed data on Serial Monitor.

// Here windSpeed / 10 will give the interger component of the wind speed
// Here windSpeed % 10 will give the fractional component of the wind speed
Serial.print ("Wind speed: ");

Serial.print (windSpeed / 100*1.609) ;

Serial.print('.");

Serial.print (windSpeed % 10);

/7 This will print the calculated wind gust data on Serial Monitor.
Serial.print ("Gusting at: ");
Serial.print (windGust / 100*1.609); // To get answer in km/h.
Serial.print('.");
Serial.print (windGust % 10);
Serial.println("");

// This will print the calculated wind direction data on Serial Monitor.
Serial.print ("Wind Direction: ™);
Serial.print (wsl.getWindDirection()); // To get the numerical data of direction in degrees.
Serial.println("");

// This will print the calculated data of total rain happened in last one day, on Serial Monitor.
Serial.print ("Total Rain: ");
Serial.println((float) rainAmmount / 1000); // To data in units of inches.

// For calculating direction from the measured voltage in Wind Vane.
incoming = analogRead (VANE_PIN) ;
for(int i=0; i<=15; i++) {
if(incoming >= sensorMin[i] && incoming <= sensorMax[i]) {
dir = dirCardl[il]l;
angle = dirDeg[i];

Page |22

Page |23

break;

// For printing direction in Characters.
Serial.print(dir);
Serial.print (angle);

Serial.print (":\n");

String sendData = "GET /update?api_key:"+ myAPI +"&"+ myFIELD1 +"="+String((flcat) rainAmmount / 1000)+

"&"+ myFIELD2 +"="+String((windSpeed/100)*1.609)+"&"+ myFIELD3 +"="+String(angle)+"&"+ myFIELD4 +"="+String(windGust/100);
espData ("AT+CIPMUX=1", 1000, DEBUG);

espData ("AT+CIPSTART=0, \"TCP\", \""+ myHOST +"\","+ myPORT, 1000, DEBUG);

espData ("AT+CIPSEND=0," +String(sendData.length()+4),1000, DEBUG);

espSerial.find (">");

espSerial.println(sendData) ;

egpData ("AT+CIPCLOSE=0", 1000, DEBUG) ;

delay(500);

// Function for communication with ESP-01 module.
String espData(String command, const int timeout, boolean debug)
{

Serial.print ("AT Command ==> ");

Serial.print (command) ;

Serial.println(" ") ;
String response = "";
espSerial.println (command) ;
long int time = millis{();
while ((time + timeout) > millis())
{

while (espSerial.available())

{

char ¢ = espSerial.read();
response += c;

¥
if (debug)
{
//Serial.print (response);
}

return response;

6.4.2. UNIT B Codes

#include "PMS.h" // Calling library of PMS1003.

#include<ESP8266WiFi.h> //Calling library of ESP8266 (ESP-12E)

#include <Arduino.h>

#include <Wire.h>

#include <SPI.h>

#include <Adafruit_Sensor.h> // Calling libraries in Arduino for sensor interface.
#include <Adafruit_BME280.h> // Calling library for BME280 sensor

Adafruit BME280 bme:

PMS pms (Serial):
PMS::DATA data;

String apiKey = "QF253KQPF9YSH2CX": // API key of ThingSpeak Channel.
const char* ssid = "computer lab"; // SS5ID/Given name of your present Wi-Fi network as shown in PC/Device.
const char* password = "12345****54"; // Password of your Wi-Fi network.

const char* server = "api.thingspeak.com"; // URL of the ThingSpeak site.

Page |24
WiFiClient client;

void setup()
{
Serial.begin(9600); // For communication between Node-MCU Board and your PC/device.
if (!bme.begin(0x76)) {
Serial.println("Could not find a valid BME280 sensor, check wiring!"):
while (1});

Serial.println("-- Default Test --");
int delayTime = 1000;
Serial.println();

delay(100); // let sensor boot up

Serial.println("Connecting to ")
Serial.println(ssid);
WiFi.begin(ssid, password):

while (WiFi.status() != WL_CONNECTED)
{

delay (500):

Serial.print("."):
}
Serial.println(""):
Serial.println("WiFi connected"):

// Printing the ESP IP address|
Serial.println(WiFi.localIP()):

void loop()
{
//Defining in-built funcions of PMS1003 and BME280 libraries.
float rH = bme.readHumidity():
float temp = bme.readTemperature():
float pres = bme.readPressure()/100.0F;
float dP = bme.readTemperature() - ((100-rH)/5);
float hI = 0.5 * (bme.readTemperature() + 61.0 + ((bme.readTemperature()-68.0)*1.2) + (rH*0.094));

if (isnan(rH) || isnan(temp) || isnan(pres) || isnan(dP) || isnan(hI))
{

Serial.println("Failed to read from BME sensor!");

return;

if (pms.read(data)){
if (client.connect (server,80)) /7 "184.106.153.149" or api.thingspeak.com
{

String postStr = apiKey:

postStr +="&fieldl=";

postStr += String(temp);

postStr +="&field2=";

postStr += String(pres):

postStr +="&field3=";

postStr += String(rH):

postStr +="&field4=";

postStr += String(dP):

postStr +="&field5=";

postStr += String(hI):

postStr +="&field6=";:

postStr += String(data.PM AE UG 1 0):
postStr +="&field7=";

postsStr += String(data.PM AE UG 2 _5);:
postStr +="&field8=";

postStr += String(data.PM AE UG 10 _0):
postStr += "\r\n\r\n";

postStr += "\r\n\r\n";

client.print {"POST /update HTTP/1.1\n");
client.print ("Host: api.thingspeak.com\n"):
client.print ("Connection: close\n"):
client.print ("X-THINGSPEAKAPIKEY: "+apiKey+"\n");
client.print ("Content-Type: application/x-www-form-urlencoded\n");
client.print ("Content-Length: ");

client.print (postStr.length()):

client.print {("\n\n");

client.print (postStr);

Serial.print ("Temperature: ");

Serial.print (temp);

Serial.print (" degrees Celcius,\nHumidity: ");
Serial.print (rH);

Serial.println("$"):

Serial.print ("Pressure: "):

Serial.print (pres):

Serial.println ("hBA");

Serial.print("Dew Point: ");

Serial.print (dP):

Serial.println("*C");

Serial.print("Heat Index: ")

Serial.print (hI);

Serial.println("*C"):

Serial.println("Sent to ThingSpeak"):

Serial.println("Waiting...")s

// thingspeak needs minimum 15 sec delay between updates, i'we set it to 30 seconds

delay(1000);
client.stop ()

Serial.println("Waiting..."):

Page |25

7.Data

7.1,

7.2.

Page |26

Visualization

To plot the meteorological variables such as Temperature, Pressure,
Humidity, and etc. we used a web-based application. Here, from the received
data over the time, the Thingspeak plots a real-time graph with a data update
within an interval of 15 seconds. Also, it has many features included to
generate numerous kinds of visualizations based on MATLAB’s web-based
environment. In this project, we used the free license version of the channel,
which allowed us to visualize up-to eight different variables per channel to
visualize. So far, we have 2 channels with total 12 visualizations of 12
parameters.

Import and Export

As mentioned earlier in section 5.5, in order to import the data from the
host MCUs to the college’s website we first exported it to the ThingSpeak
channel. It was done by using providing the channel id in the programming of
both units A and B. Now, one of the features of the ThingSpeak is it allows to
export the data to another address (webpage) as well. So, we included the
channel ids in our HTML code. This whole process for data, from sensors to the
college’s website, takes an approximate time of 30 seconds. To have the data
in form of CSV files, users can download files by logging in to the channel.

7.3. Flowchart

7.3.1.

7.3.2.

UNIT A

INPUT
From sensors

Processing in Arduino Uno
with use of built-in functions

A 4

Data transmission
by an ESP-01 Wi-Fi module

A 4

Data visualization
On ThingSpeak

Institute Webpage

OUPUT
On Webpage

UNIT B

INPUT
From sensors

Data Processing
and Transmission via NODE-MCU
with use of built-in functions

v

Data visualization
On ThingSpeak

Institute Webpage

OUPUT
On Webpage

OUPUT
On Serial Monitor

Page |27

Page |28

8. Webpage for the meteorological data

To show the meteorological data on our college’s website we created a web-page
with help of languages HTML, CSS, JS. The complete look of the webpage has been given in
the Figure x. As mentioned in earlier sections, the data is gathered through the export links
of our ThingSpeak channels along with real-time data visualization of ambient temperature.
The web page is divided into 6 parts, 3 of the weather station data, and other three
consisting of ThingSpeak channel links, the following documentation and details of the
project members.

The first section in web-page contains the data from BME-280, temperature,
pressure, heat index, dew point, relative humidity and real-time visualization of ambient
temperature. The second section, comprises of AQIl data as measured by PMS1003 sensor,
and shows the values PM 1.0, PM 2.5, PM 10.0 in units of pg/m?3. The largest among these
three values of PM concentration is defined as AQIl index on our webpage. Finally, in the
third section the wind speed, direction (in characters), wind gust and total rainfall of last 24
hours is shown.

Section 4 has two buttons, each with link for the corresponding channel’s public
view, following which the webpage has documentation and details of makers of this
project.

